SARTURIUS

Cubis® II

La nouvelle génération de balances modulaires

Points Forts

Performances de pesage supérieures

Un temps de mesure rapide et des résultats de pesage précis sont garantis grâce au système de pesage monolithique et aux solutions techniques intégrées.

Plus de problèmes avec les échantillons électrostatiques

Les paravents en verre recouverts d'une couche conductrice empêchent les effets électrostatiques extérieurs. L'ionisateur intégré aux paravents des versions D et I élimine efficacement les charges électrostatiques des échantillons.

Conseils sur le processus de nettoyage

La QApp de nettoyage fournit un guidage visuel, des informations sur la compatibilité chimique ainsi qu'un suivi électronique de ces événements et est désormais disponible gratuitement dans tous les modèles Cubis® II MCA.

Possibilité de faire évoluer le matériel

La fonction paravent motorisée ou l'ionisateur intégré peuvent être activés après l'achat pour les balances de grande capacité et semi-micro. Un paravent intérieur automatisé est disponible en tant qu'accessoire klick-in.

Conformité et intégrité des données

L'intégrité des données de bout en bout, les contrôles techniques pour la conformité à la norme 21 CFR Part 11, l'audit trail intégré et la gestion des utilisateurs à la pointe de la technologie permettent aux laboratoires de répondre aux exigences réglementaires. Ces fonctions sont directement disponibles sur les balances Cubis® II, sans nécessiter de logiciel supplémentaire.

Gestion du parc matériels

La suite Ingenix est une solution flexible et ouverte qui fonctionne avec ou sans système ELN/LIM. Elle offre des connexions illimitées pour gérer facilement l'ensemble du parc de balances de laboratoire Cubis® II MCA dans tous les laboratoires d'un même réseau.

Facilité d'utilisation

La fonction d'apprentissage du paravent motorisé, les processus guidés pour diverses applications de pesage (QApps), la mise à niveau motorisée automatisée et l'ajustage interne automatique (isoCAL) permettent d'utiliser la balance facilement et sans erreur.

Exemple : Possibilité de Mise à Niveau du Matériel

Paravent intérieur motorisé

L'installation des balances Cubis[®] Il de grande capacité ou semi-micro sur une table de travail ou dans une hotte laminaire avec un flux d'air filtré soumet l'instrument à des courants d'air. Le paravent intérieur motorisé YDS125A garantit des performances de pesage optimales et une grande facilité d'utilisation, même en cas de courants d'air.

Exemple d'application : Vérification de la Pipette

Kits d'étalonnage de pipettes

Les balances Cubis[®] II avec le kit d'étalonnage de pipettes VF988, YCP04MS ou YCP07MC et la QAPP Pipette Check Advanced (QAPP005) constituent une solution complète pour tester les pipettes conformément à la norme DIN EN ISO 8655.

Informations sur le Produit

Les balances de laboratoire haut de gamme Cubis® II, avec une plage de charge maximale comprise entre 2,1 g et 70 kg et une précision de lecture comprise entre 0,1 µg et 1 g, constituent une solution idéale pour toutes les applications de pesage en laboratoire. Ces balances étant modulaires, l'écran, le module de pesage, le paravent et le logiciel QApps peuvent être personnalisés configuré offrant une solution flexible pour les besoins individuels.

Unités d'affichage et de Contrôle Cubis® II

Туре	MCA	Туре	MCE
Affichage*	Écran tactile TFT couleur de 7 pouces au format 16:9 avec interface utilisateur intuitive	Affichage*	Écran tactile TFT pour les opérations de pesage de routine
Logiciel	Ensemble d'applications de pesage de base installées en usine (sans licence) et progiciels pouvant faire l'objet d'une licence (QP) pour diverses applications (QApps) et extensions fonctionnelles.	Logiciel	Ensemble d'applications de pesage de base installées en usine. Pas de logiciels sous licence.

^{*} Rétro-éclairage LED 50 000 heures (en cas d'utilisation avec le contraste maximal), longueur du câble 25 cm

Spécifications Techniques

Modules de pesage Cubis® II Balances Ultra-Micro 0,0001 mg

	Unités	2.7S
Intervalle d'échelle (d)	mg	0.0001
Capacité maximale (Max)	g	2.1
Répétabilité jusqu'à 5% de la charge		
Écart-type des valeurs de charge, tolérance	mg	0.0002
Écart-type des valeurs de charge, valeur typique	mg	0.00015
Répétabilité proche de Max		
Écart-type des valeurs de charge, tolérance	mg	0.00025
Écart-type des valeurs de charge, valeur typique	mg	0.00018
Écart de linéarité		
Tolérance	mg	0.0009
Valeur typique	mg	0.0007
Déviation à la charge excentrique, positions selon OIML R76		
Poids de l'essai	g	1
Tolérance	mg	0.0007
Valeur typique	mg	0.0005
Dérive de la sensibilité entre +10° C et +30° C	ppm/K	1
Capacité maximale de la tare : Moins de 100 % de la capacité maximale		
Classe de précision selon la directive 2014 31 UE		I
Intervalle de l'échelle de vérification (e) conformément à la directive 2014 31 UE	mg	1
Charge minimale (Min) selon la directive 2014 31 UE	mg	0.01
Poids minimum selon USP (United States Pharmacopeia), Chap. 41 et Ph.Eur. 2	.1.7.	
Poids minimum optimal	mg	0.082
Poids minimum typique	mg	0.3
Temps de stabilisation typique	S	7
Durée typique de la mesure	S	10
Poids d'étalonnage recommandé		
Charge d'essai externe	g	2
Classe de précision, selon OIML R111-1		E2
isoCAL		
Changement de température	K	1.5
Durée	h	12
Dimensions		
MCE MCA Module de pesée (L × L× H)*	mm	340×139×129
Module élctronique MCE (L × L× H)	mm	315×240×61
Module électronique MCA (L × L× H)	mm	355×240×61
Taille du plateau de pesée	mm	Ø 20
Plateau de pesée pour filtre	mm	Ø 50
Poids, approx.*	kg	6.4 7.1

 $^{^{\}star}$ en fonction de la taille du plateau de pesée, du plateau de pesée filtrant et du paravent

Modules de pesage Cubis® II Microbalances 0,001 mg

	Units	10.6S	6.6\$	3.6P
Intervalle d'échelle (d)	mg	0.001	0.001	0.001 0.002 0.005
Capacité maximale (Max)	g	10.1	6.1	1.1 2.1 3.1
Répétabilité jusqu'à 5% de la charge				
Écart-type des valeurs de charge, tolérance	mg	0.001	0.001	0.003
Écart-type des valeurs de charge, valeur typique	mg	0.0005	0.0005	0.0005
Répétabilité proche de Max				
Écart-type des valeurs de charge, tolérance	mg	0.001	0.001	0.005
Écart-type des valeurs de charge, valeur typique	mg	0.0006	0.0006	0.0006
Écart de linéarité				
Tolérance	mg	0.004	0.004	0.004
Valeur typique	mg	0.003	0.003	0.003
Déviation à la charge excentrique, positions selon OIML R76				
Poids de l'essai	g	5	2	1
Tolérance	mg	0.004	0.004	0.005
Valeur typique	mg	0.003	0.003	0.003
Dérive de la sensibilité entre +10° C et +30° C	ppm/K	1	1	1
Capacité maximale de la tare : Moins de 100 % de la capacité maximale				
Classe de précision selon la directive 2014 31 UE		1	1	1
Intervalle de l'échelle de vérification (e) conformément à la directive 2014 31 U mg		1	1	1
Charge minimale (Min) selon la directive 2014 31 UE	mg	0.1	0.1	0.1
Poids minimum selon USP (United States Pharmacopeia), Chap. 41				
Poids minimum optimal	mg	0.82	0.82	0.82
Poids minimum typique	mg	0.82	0.82	0.82
Temps de stabilisation typique	S	5	5	5
Durée typique de la mesure	S	8	8	8
Poids d'étalonnage recommandé				
Charge d'essai externe	g	10	5	3
Classe de précision, selon OIML R111-1		E2	E2	E2
isoCAL				
Changement de température	K	1.5	1.5	1.5
Durée	h	12	12	12
Dimensions				
MCE MCA Module de pesée (L × L × H)*	mm	340×139×129	340×139×129	340×139×129
Module élctronique MCE (L × L × H)	mm	315×240×61	315×240×61	315×240×61
Module électronique MCA (L × L × H)	mm	355×260×61	355×260×61	355×260×61
Taille du plateau de pesée	mm	Ø 30	Ø 30	Ø 30
Plateau de pesée pour filtre	mm	Ø 50	Ø 50	Ø 50
Poids, approx.*	kg	6.4 7.1	6.4 7.1	6.4 7.1

 $^{^{\}star}$ en fonction de la taille du plateau de pesée, du plateau de pesée filtrant et du paravent

Modules de pesage Cubis® II Microbalances de grande capacité 0,001 - 0,002 mg

	Unités	36S	36P	66S
Intervalle d'échelle (d)	mg	0.001	0.01 0.001	0.001
Capacité maximale (Max)	g	32	32 10.1	61
Répétabilité jusqu'à 5% de la charge				
Écart-type des valeurs de charge, tolérance	mg	0.0015	0.002	0.0015
Écart-type des valeurs de charge, valeur typique	mg	0.0007	0.0007	0.0007
Répétabilité proche de Max				
Écart-type des valeurs de charge, tolérance	mg	0.0025	0.007	0.004
Écart-type des valeurs de charge, valeur typique	mg	0.0018	0.005	0.0025
Écart de linéarité				
Tolérance	mg	0.012	0.015	0.02
Valeur typique	mg	0.005	0.006	0.005
Écart lorsque la charge est décentrée, positions selon OIML R76				
Poids de l'essai	g	10	10	20
Tolérance	mg	0.015	0.02	0.02
Valeur typique	mg	0.006	0.008	0.01
Dérive de la sensibilité entre +10° C et +30° C	ppm/K	1	1	1
Capacité maximale de la tare : Moins de 100 % de la capacité maximale				
Classe de précision selon la directive 2014 31 UE		I	1	1
Intervalle de l'échelle de vérification (e) conformément à la directive 2014 31 EU mg		1	1	1
Charge minimale (Min) selon la directive 2014 31 UE	mg	0.1	0.1	0.1
Poids minimum selon USP (United States Pharmacopeia), Chap. 41 et P	h.Eur. 2.1.	7		
Poids minimum optimal	mg	0.82	0.82	0.82
Poids minimum typique	mg	1.4	1.4	1.4
Temps de stabilisation typique	S	3.5	3.5 2.5	3.5
Durée typique de la mesure	S	10	10 6	10
Poids d'étalonnage recommandé				
Charge d'essai externe	g	20	20	50
Classe de précision, selon OIML R111-1		E2	E2	E2
isoCAL				
Changement de température	K	1.5	1.5	1.5
Durée	h	12	12	12
Dimensions				
MCE MCA Module de pesée (L × L × H)*	mm	486 510×240×302	486 510×240×302	486 510×240×302
Taille du plateau de pesée	mm	Ø 50	Ø 50	Ø 50
Poids, approx.*	kg	15	15	15

 $^{^{\}star}$ en fonction de la taille du plateau de pesée, du plateau de pesée filtrant et du paravent

Modules de pesage Cubis® II Microbalances de grande capacité 0,001 - 0,002

mg	Unités	66P	116S
Intervalle d'échelle (d)	mg	0.01 0.001	0.002
Capacité maximale (Max)	g	61 12	111
Répétabilité jusqu'à 5% de la charge			
Écart-type des valeurs de charge, tolérance	mg	0.002	0.004
Écart-type des valeurs de charge valeur typique	mg	0.0007	0.0025
Répétabilité proche de Max			
Écart-type des valeurs de charge, tolérance	mg	0.01	0.01
Écart-type des valeurs de charge, valeur typique	mg	0.006	0.005
Écart de linéarité			
Tolérance	mg	0.02	0.03
Valeur typique	mg	0.008	0.02
Écart lorsque la charge est décentrée, positions selon OIML R76			
Poids de l'essai	g	20	50
Tolérance	mg	0.03	0.03
Valeur typique	mg	0.012	0.02
Dérive de la sensibilité entre +10° C et +30° C	ppm/K	1	1
Capacité maximale de la tare : Moins de 100 % de la capacité maximale			
Classe de précision selon la directive 2014 31 UE		I	I
Intervalle de l'échelle de vérification (e) conformément à la directive 2014 31 EU mg	9	1	1
Charge minimale (Min) selon la directive 2014 31 UE	mg	0.1	0.2
Poids minimum selon USP (United States Pharmacopeia), Chap. 41 et Ph.Eur. 2.	.7		
Poids minimum optimal	mg	0.82	1.64
Poids minimum typique	mg	1.4	5.0
Temps de stabilisation typique	S	3.5 2.5	3.5
Durée typique de la mesure	S	10 6	8
Poids d'étalonnage recommandé			
Charge d'essai externe	g	50	50
Classe de précision, selon OIML R111-1		E2	E2
isoCAL			
Changement de température	K	1.5	1.5
Durée	h	12	12
Dimensions			
MCE MCA Module de pesée (L × L× H)*	mm	486 510×240×302	510 x 240 × 302
Taille du plateau de pesée	mm	Ø 50	
Poids, approx.*	kg	15	
* en fonction de la taille du plateau de pesée, du plateau de pesée filtrant et du paravent			

 $^{^{\}star}$ en fonction de la taille du plateau de pesée, du plateau de pesée filtrant et du paravent

Cubis® II Modules de Pesage Balances Semi-Micro 0,01 mg

	Unités	226S	225S	225P	125S	125P
Intervalle d'échelle (d)	mg	0.005	0.01	0.01 0.1	0.01	0.01 0.1
Capacité maximale (Max)	g	220	220	120 220	120	60 120
Répétabilité jusqu'à 5% de la charge						
Écart-type des valeurs de charge, tolérance	mg	0.01	0.015	0.015	0.015	0.015
Écart-type des valeurs de charge, valeur typique	mg	0.004	0.007	0.007	0.007	0.007
Répétabilité proche de Max						
Écart-type des valeurs de charge, tolérance	mg	0.025	0.025	0.06	0.025	0.06
Écart-type des valeurs de charge, valeur typique	mg	0.015	0.015	0.02	0.015	0.02
Écart de linéarité						
Tolérance	mg	0.07	0.07	0.1	0.07	0.15
Valeur typique	mg	0.03	0.03	0.03	0.03	0.1
Écart lorsque la charge est décentrée, positions selon OIML R76	,					
Poids de l'essai	g	100	100	100	50	50
Tolérance	mg	0.12	0.15	0.2	0.12	0.2
Valeur typique	mg	0.04	0.05	0.06	0.04	0.1
Dérive de la sensibilité entre +10° C et +30° C	ppm/K	1	1	1	1	1
Capacité maximale de la tare : Moins de 100 % de la capacité maximale						
Classe de précision selon la directive 2014 31 EU		1	I	I	1	I
Intervalle de l'échelle de vérification (e) conformément à la directive 2014 31 EU mg		1	1	1	1	1
Charge minimale (Min) selon la directive 2014 31 UE	mg	1	1	1	1	1
Poids minimum selon USP (United States Pharmacopeia), Chap. 41						
Poids minimum optimal	mg	4.1	8.2	8.2	8.2	8.2
Poids minimum typique	mg	8.0	13.0	13.0	13.0	13.0
Temps de stabilisation typique	S	1.5	1.5	1.5	1.5	2
Durée typique de la mesure	S	6	4	4	4	6
Poids d'étalonnage recommandé						
Charge d'essai externe	g	200	200	200	100	100
Classe de précision, selon OIML R111-1		E2	E2	E2	E2	E2
soCAL						
Changement de température	K	1.5	1.5	1.5	1.5	1.5
Durée	h	12	12	12	12	12
Dimensions	,					
MCE MCAModule de pesée (L × L× H)*	mm		301×240	×301		404×240×37
Module élctronique MCE (L × L× H)	mm	-	-	-	-	315×240×61
Module électronique MCA (L × L× H)	mm	-	-	-	-	355×240×61
Taille du plateau de pesée	mm	Ø 50	Ø 90			85×85
Poids, approx.*	kg		15			10.2 11.7

^{*} en fonction de la taille du plateau de pesée, du plateau de pesée filtrant et du paravent
** Le module 125P a des dimensions différentes de celles des autres balances à 5 chiffres (voir Dimensions de la balance)

Modules de pesée Cubis® II Balances analytiques 0,1 mg

zalanees analy hques e,r mg							
	Unités	524S	524P	324S	324P	224S	124S
Intervalle d'échelle (d)	mg	0.1	0.1 0.2 0.5	0.1	0.1 0.2 0.5	0.1	0.1
Capacité maximale (Max)	g	520	120 240 520	320	80 160 320	220	120
Répétabilité jusqu'à 5% de la charge							
Écart-type des valeurs de charge, tolérance	mg	0.08	0.08	0.08	0.08	0.07	0.1
Écart-type des valeurs de charge, valeur typique	mg	0.04	0.04	0.04	0.04	0.05	0.05
Répétabilité proche de Max							
Écart-type des valeurs de charge, tolérance	mg	0.1	0.15	0.1	0.1	0.07	0.1
Écart-type des valeurs de charge, valeur typique	mg	0.05	0.05	0.05	0.05	0.05	0.05
Écart de linéarité							
Tolérance	mg	0.4	0.5	0.3	0.5	0.2	0.2
Valeur typique	mg	0.2	0.2	0.2	0.2	0.13	0.13
Écart lorsque la charge est décentrée, positions selon OIML	R76						
Poids de l'essai	g	200	200	200	200	100	50
Tolérance	mg	0.3	0.4	0.3	0.4	0.2	0.2
Valeur typique	mg	0.2	0.2	0.2	0.2	0.12	0.12
Dérive de la sensibilité entre +10° C et +30° C	ppm/K	1	1	1	1	1	1
Capacité maximale de la tare : Moins de 100 % de la capacité	maximale						
Classe de précision selon la directive 2014 31 UE		I	I	I	I	I	I
Intervalle de l'échelle de vérification (e) conformément à la directive 2014 31 EU	mg	1	1	1	1	1	1
Charge minimale (Min) selon la directive 2014 31 UE	mg	10	10	10	10	10	10
Poids minimum selon USP (United States Pharmacopeia), Ch	nap. 41						
Poids minimum optimal	mg	82	82	82	82	82	82
Poids minimum typique	mg	82	82	82	82	100	100
Temps de stabilisation typique	S	1	1	1	1	1	1
Durée typique de la mesure	S	3	3	3	3	3	3
Poids d'étalonnage recommandé							
Charge d'essai externe	g	500	500	300	300	200	100
Classe de précision, selon OIML R111-1		E2	E2	E2	E2	E2	E2
isoCAL							
Changement de température	K	1.5	1.5	1.5	1.5	1.5	1.5
Durée	h	6	6	12	12	12	12
Dimensions							
Module de pesage (L × L× H)*	mm			425×24	0×373		
Taille du plateau de pesée	mm			85×85			
Poids, approx.*	kg			8.2 10.0	`		

 $^{^{\}star}$ en fonction de la taille du plateau de pesée, du plateau de pesée filtrant et du paravent

Unités	5203S	5203P	3203S	22035	2203P	1203
mg	1	1 2 5	1	1	1 10	1
g	5200	1200 2400 5200	3200	2200	1010 2200	1200
mg	1	1	1	0.7	0.7	0.7
mg	0.6	0.6	0.6	0.5	0.5	0.5
mg	1	1	1	1	1	0.7
mg	0.6	0.6	0.6	0.6	0.6	0.6
mg	5	5	5	3	5	2
mg	2	3	2	2	3	1
R76						
g	2000	2000	1000	1000	1000	500
mg	2	2	2	2	3	2
mg	1	1	1	1	2	1
ppm/K	1	1	1	1	1	1.5
maximale						
	I	I	I	I	1	I
mg	10	10	10	10	10	10
mg	100	100	100	100	100	100
nap. 41						
mg	820	820	820	820	820	820
mg	1200	1200	1200	1000	1000	1000
S	1	1	1	1	1	1
S	2	2	2	1.5	1.5	1.5
g	5000	5000	3000	2000	1000	1000
	E2	E2	E2	E2	E2	E2
K	1.5	1.5	1.5	1.5	1.5	1.5
h	6	6	6	12	12	12
mm			425×240	0×122 284	1 373	
mm			140×140)		
	mg ppm/K maximale mg mg s s s	mg 1 g 5200 mg 1 mg 0.6 mg 1 mg 0.6 mg 5 mg 2 R76 g 2000 mg 2 mg 1 ppm/K 1 mg 10 mg 100 mg 100 map. 41 mg 820 mg 1200 s 1 s 2 g 5000 E2 K 1.5 h 6	mg 1 1 1 2 5 5 200	mg 1 1 2 5 1 g 5200 1200 2400 5200 3200 5200 mg 1 1 1 mg 0.6 0.6 0.6 mg 1 1 1 mg 0.6 0.6 0.6 mg 2 3 2 R76 g 2000 2000 1000 mg 2 2 2 mg 1 1 1 ppm/K 1 1 1 maximale I I I mg 100 100 100 nap. 41 mg 820 820 820 mg 1200 1200 1200 s 1 1 1 s 2 2 2 g 5000 5000 3000 E2 E2 E2 K 1.5 1.5 1.5 h 6 6 6 <td>mg 1 1 2 5 1 1 g 5200 1200 2400 3200 2200 mg 1 1 0.7 mg 0.6 0.6 0.5 mg 1 1 1 mg 0.6 0.6 0.6 mg 5 5 5 3 mg 2 3 2 2 R76 2 2 2 2 mg 1 1 1 1 pmg 2 2 2 2 mg 1 1 1 1 ppm/K 1 1 1 1 maximale I I I I mg 100 100 100 100 mg 1200 1200 1200 1000 mg 1200 1200 1200 1000 s 1 1 1 1</td> <td>mg 1 1 2 5 1 1 1 10 g 5200 1200 2400 3200 2200 1010 2200 mg 1 1 1 0.7 0.7 mg 0.6 0.6 0.6 0.5 0.5 mg 1 1 1 1 1 mg 0.6 0.6 0.6 0.6 0.6 0.6 mg 5 5 5 3 5 3 5 mg 2 3 2 2 3 3 5 mg 2 2 2 2 3 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 1 1 1 1 1 1 1 1 1 1 1 <td< td=""></td<></td>	mg 1 1 2 5 1 1 g 5200 1200 2400 3200 2200 mg 1 1 0.7 mg 0.6 0.6 0.5 mg 1 1 1 mg 0.6 0.6 0.6 mg 5 5 5 3 mg 2 3 2 2 R76 2 2 2 2 mg 1 1 1 1 pmg 2 2 2 2 mg 1 1 1 1 ppm/K 1 1 1 1 maximale I I I I mg 100 100 100 100 mg 1200 1200 1200 1000 mg 1200 1200 1200 1000 s 1 1 1 1	mg 1 1 2 5 1 1 1 10 g 5200 1200 2400 3200 2200 1010 2200 mg 1 1 1 0.7 0.7 mg 0.6 0.6 0.6 0.5 0.5 mg 1 1 1 1 1 mg 0.6 0.6 0.6 0.6 0.6 0.6 mg 5 5 5 3 5 3 5 mg 2 3 2 2 3 3 5 mg 2 2 2 2 3 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 1 1 1 1 1 1 1 1 1 1 1 <td< td=""></td<>

 $^{^{\}star}$ en fonction de la taille du plateau de pesée, du plateau de pesée filtrant et du paravent

	Unités	623S	623P	323S	14202S	14202P
Intervalle d'échelle (d)	mg	1	1 2 5	1	10	10 20 50
Capacité maximale (Max)	g	620	150 300 620	320	14200	3500 700 14200
Répétabilité jusqu'à 5% de la charge						
Écart-type des valeurs de charge, tolérance	mg	0.7	1	0.7	10	10
Écart-type des valeurs de charge, valeur typique	mg	0.4	0.4	0.4	5	5
Répétabilité proche de Max						
Écart-type des valeurs de charge, tolérance	mg	0.7	1	0.7	10	10
Écart-type des valeurs de charge, valeur typique	mg	0.5	0.5	0.5	5	5
Écart de linéarité						
Tolérance	mg	2	5	2	30	50
Valeur typique	mg	0.6	1.5	0.6	10	20
Écart lorsque la charge est décentrée, positions selon OIML R76	5					
Poids de l'essai	g	200	200	200	5000	5000
Tolérance	mg	2	4	2	20	40
Valeur typique	mg	1	3	1	10	10
Dérive de la sensibilité entre +10° C et +30° C	ppm/K	2	2	2	1.5	1.5
Capacité maximale de la tare : Moins de 100 % de la capacité ma	aximale					
Classe de précision selon la directive 2014 31 EU		II	II	Ш	I	I
Intervalle de l'échelle de vérification (e) conformément à la direc 2014 31 EU	tive mg	10	10	10	100	100
Charge minimale (Min) selon la directive 2014 31 UE	mg	20	20	20	1000	1000
Poids minimum selon USP (United States Pharmacopeia), Chap	. 41					
Poids minimum optimal	mg	820	820	820	8200	8200
Poids minimum typique	mg	820	820	820	8200	8200
Temps de stabilisation typique	S	0.8	0.8	0.8	0.8	0.8
Durée typique de la mesure	S	1	1	1	1.5	1.5
Poids d'étalonnage recommandé						
Charge d'essai externe	g	500	500	200	14000	14000
Classe de précision, selon OIML R111-1		E2	E2	E2	E2	E2
soCAL						
Changement de température	K	2	2	2	1.5	1.5
Durée	h	12	12	12	6	6
Dimensions						
Module de pesage (L × L × H)*	mm	425×240	0×122 284 37	3	425×240	×95
Taille du plateau de pesée	mm	140×140)		206×206	
Poids, approx.*	kg	5.9 7.5	9.4 10.2		5.4	

^{*} en fonction de la taille du plateau de pesée, du plateau de pesée filtrant et du paravent

	Unités	10202S	8202S	6202S	6202P	5202S	4202S	2202
ntervalle d'échelle (d)	mg	10	10	10	10 20 50	10	10	10
Capacité maximale (Max)	g	10200	8200	6200	1500 3000 6200	5200	4200	2200
Répétabilité jusqu'à 5% de la charge								
Écart-type des valeurs de charge, tolérance	mg	7	7	7	7	6	7	7
Écart-type des valeurs de charge, valeur typique	mg	5	4	4	4	2	4	4
Répétabilité proche de Max								
Écart-type des valeurs de charge, tolérance	mg	7	7	7	40	6	7	7
Écart-type des valeurs de charge, valeur typique	mg	5	4	4	15	2	4	4
Écart de linéarité								
Tolérance	mg	20	20	20	50	10	20	20
Valeur typique	mg	6	6	6	20	5	6	6
Écart lorsque la charge est décentrée, positions selo	on OIML	R76						
Poids de l'essai	g	5000	5000	2000	2000	2000	2000	1000
Tolérance	mg	20	30	20	30	10	30	20
Valeur typique	mg	10	10	10	30	5	10	10
Dérive de la sensibilité entre +10° C et +30° C	ppm/K	1.5	2	2	2	2	2	2
Capacité maximale de la tare : Moins de 100 % de la	capacité	maximale						
Classe de précision selon la directive 2014 31 UE		П	П	II	II	I	II	II
Intervalle de l'échelle de vérification (e) conformément à la directive 2014 31 EU	mg	100	100	100	100	100	100	100
Charge minimale (Min) selon la directive Directive 2014 31 EU	mg	1000	500	500	500	1000	500	500
Poids minimum selon USP (United States Pharmaco	peia), Ch	nap. 41						
Poids minimum optimal	mg	8200	8200	8200	8200	8200	8200	8200
Poids minimum typique	mg	8200	8200	8200	8200	8200	8200	8200
Temps de stabilisation typique	S	0.8	1	1	1	0.8	1	0.8
Durée typique de la mesure	S	1.5	1.5	1.5	1.5	1	1	1
Poids d'étalonnage recommandé			,					
Charge d'essai externe	g	10000	7000	5000	5000	5000	3000	1500
Classe de précision, selon OIML R111-1		E2	E2	E2	E2	E2	E2	E2
isoCAL							-	
Changement de température	K	1.5	2	2	2	2	2	2
Durée	h	6	12	12	12	12	12	12
Dimensions								
Module de pesage (L × L × H)*	mm			425×240)×95	425×240 ×122 284 373	425×240)×95
Taille du plateau de pesée	mm			206×206)	140×140	206×206)
Poids, approx.*	kg			5.4		5.9 7.5	5.4	

^{*} en fonction de la taille du plateau de pesée, du plateau de pesée filtrant et du paravent

Dalances de Frecision					
	Unités	1202S	122015	8201S	5201S
Intervalle d'échelle (d)	mg	10	100	100	100
Capacité maximale (Max)	9	1200	12200	8200	5200
Répétabilité jusqu'à 5% de la charge					
Écart-type des valeurs de charge, tolérance	mg	7	50	50	50
Écart-type des valeurs de charge, valeur typique	mg	4	20	20	20
Répétabilité proche de Max					
Écart-type des valeurs de charge, tolérance	mg	7	50	50	50
Écart-type des valeurs de charge, valeur typique	mg	4	20	20	20
Écart de linéarité					
Tolérance	mg	20	100	100	100
Valeur typique	mg	6	30	30	20
Écart lorsque la charge est décentrée, positions selon OIML R76					
Poids de l'essai	g	500	5000	5000	2000
Tolérance	mg	20	200	200	200
Valeur typique	mg	10	100	100	100
Dérive de la sensibilité entre +10° C et +30° C	ppm/K	2	4	4	4
Capacité maximale de la tare : Moins de 100 % de la capacité maxim	ale				
Classe de précision selon la directive 2014 31 EU		I	II	II	II
Intervalle de l'échelle de vérification (e) conformément à la directive 2014 31 EU	mg	100	1000	1000	1000
Charge minimale (Min) selon la directive 2014 31 EU	mg	500	5000	5000	5000
Poids minimum selon USP (United States Pharmacopeia), Chap. 41					
Poids minimum optimal	mg	8200	82000	82000	82000
Poids minimum typique	mg	8200	82000	82000	82000
Temps de stabilisation typique	S	0.8	0.8	0.8	0.8
Durée typique de la mesure	S	1	1	1	1
Poids d'étalonnage recommandé					
Charge d'essai externe	g	700	12000	8000	5000
Classe de précision, selon OIML R111-1		E2	F1	F1	F1
isoCAL					
Changement de température	K	2	4	4	4
Durée	h	6	12	12	12
Dimensions					
Module de pesage (L × L × H)*	mm		4	25×240×95	
Taille du plateau de pesée	mm		2	06×206	
Poids, approx.*	kg		5	.4	
* on fonction de la taille du plateau de perée du plateau de perée filtrent et du parevent					

 $^{^{\}star}$ en fonction de la taille du plateau de pesée, du plateau de pesée filtrant et du paravent

Modules de pesage Cubis® II Balances de Grande Capacité

Balarices de Orande Capacite						
	Unités	32202P	70201S	50201S	36201S	36201P
Intervalle d'échelle (d)	mg	10 100	100	100	100	100 1000
Capacité maximale (Max)	g	4200 32200	70200	50200	36200	10200 3620
Repétabilité jusqu'à 5% de la charge						
Écart-type des valeurs de charge, tolérance	mg	40	100	100	100	100
Écart-type des valeurs de charge, valeur typique	mg	20	40	40	20	20
Répétabilité proche de Max						
Écart-type des valeurs de charge, tolérance	mg	40 100	100	100	100	100
Écart-type des valeurs de charge, valeur typique	mg	20 50	40	40	20	20
Écart de linéarité						
Tolérance	mg	200	500	500	200	200
Valeur typique	mg	100	150	150	100	100
Écart lorsque la charge est décentrée, positions selon OIML	R76					
Poids de l'essai	g	10000	20000	20000	10000	10000
Tolérance	mg	200	500	500	300	300
Valeur typique	mg	100	300	300	200	200
Dérive de la sensibilité entre +10° C et +30° C	ppm/K	2	2	2	2	2
Capacité maximale de la tare : Moins de 100 % de la capacité	é maximale					
Classe de précision selon la directive 2014 31 UE		-	II	II	II	II
Intervalle de l'échelle de vérification (e) conformément à la directive 2014 31 EU	mg	-	1000	1000	1000	1000
Charge minimale (Min) selon la directive 2014 31 UE	mg	_	5000	5000	5000	5000
Poids minimum selon USP (United States Pharmacopeia), C	hap. 41					
Poids minimum optimal	mg	8200	82000	82000	82000	82000
Poids minimum typique	mg	8200	82000	82000	82000	82000
Temps de stabilisation typique	S	2	1.5	1.5	1.5	1.5
Durée typique de la mesure	S	2	1.5	1.5	2	2
Poids d'étalonnage recommandé						
Charge d'essai externe	g	30000	70000	50000	30000	30000
Classe de précision, selon OIML R111-1		F1	F1	F1	F1	F1
isoCAL						
Changement de température	K	2	2	2	4	4
Durée	h	12	12	12	12	12
Dimensions						
Module de pesage (L × L × H)*	mm	412×400× 159		412×	400×126	
Taille du plateau de pesée	mm	Ø 233		400×	300	
Poids, approx.*	kg	17.1		15.8		
	· · · · · · · · · · · · · · · · · · ·			·		

^{*} en fonction de la taille du plateau de pesée, du plateau de pesée filtrant et du paravent

Modules de pesage Cubis® II Balances de Grande Capacité

·					
	Unités	20201S	112015	70200S	36200S
Intervalle d'échelle (d)	mg	100	100	1000	1000
Capacité maximale (Max)	g	20200	11200	70200	36200
Répétabilité jusqu'à 5% de la charge					
Écart-type des valeurs de charge, tolérance	mg	100	100	500	500
Écart-type des valeurs de charge, valeur typique	mg	20	20	200	200
Répétabilité proche de Max					
Écart-type des valeurs de charge, tolérance	mg	100	100	500	500
Écart-type des valeurs de charge, valeur typique	mg	20	20	200	200
Écart de linéarité					
Tolérance	mg	200	200	1000	1000
Valeur typique	mg	60	60	200	200
Écart lorsque la charge est décentrée, positions selon OIML R76					
Poids de l'essai	g	5000	5000	20000	10000
	mg	300	300	1000	1000
Valeur typique	mg	200	200	600	500
Dérive de la sensibilité entre +10° C et +30° C	ppm/K	2	2	3	3
Capacité maximale de la tare : Moins de 100 % de la capacité maxi	male				
Classe de précision selon la directive 2014 31 EU		II	II	II	II
Intervalle de l'échelle de vérification (e) conformément à la directive 2014 31 EU	mg	1000	1000	10000	1000
Charge minimale (Min) selon la directive 2014 31 EU	mg	5000	5000	50000	50000
Poids minimum selon USP (United States Pharmacopeia), Chap. 4	1				
Poids minimum optimal	mg	82000	82000	820000	820000
Poids minimum typique	mg	82000	82000	820000	820000
Temps de stabilisation typique	S	1.5	1.5	1	1
Durée typique de la mesure	S	2	2	1.2	1.2
Poids d'étalonnage recommandé					
Charge d'essai externe	g	20000	10000	70000	30000
Classe de précision, selon OIML R111-1		F1	F1	F1	F1
isoCAL					
Changement de température	K	4	4	2	4
Durée	h	12	12	12	12
Dimensions					
Module de pesage (L × L × H)*	mm		412×4	00×126	
Taille du plateau de pesée	mm		400×3	00	
Poids, approx.*	kg		15.8		
* on fonction de la taille du plateau de perée du plateau de perée filtrant et du passer					

 $^{^{\}star}$ en fonction de la taille du plateau de pesée, du plateau de pesée filtrant et du paravent

Spécifications Techniques

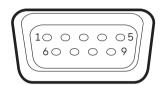
Données électriques

		Balances ultra-micro, micro, analytiques, de précision et de grande capacité	Micro et semi-micro à haute capacité soldes	
	Unités	Valeur	Valeur	
Site d'installation				
AC tension	V	100-240 (±10%)	100-240 (±10%)	
Fréquence	Hz	50-60 (±5%)	47-63	
Consommation de courant, maximum	А	1.0	0.8	
Catégorie de surtension selon IEC 60664-1		II	II	
Niveau de pollution selon IEC 61010-1 IEC 60664-1		2	2	
Alimentation de l'appareil (secondaire)				
Max. DC voltage	V	14,25-15,75 à 2 A de sortie	15 ± 15% à 4.3 A courant de sortie	
Puissance, maximale	W	30	64.5	
Câble d'alimentation		Conformément à la norme IEC 60320-1/C14 : fiche spécifique au pays, à 3 broches, bilatérale	Conformément à la norme IEC 60320-1 C13 C14, avec fiche IEC, 3 broches, et avec une fiche d'alimentation spécifique au pays	
Sécurité de l'équipement électrique		Selon EN 61010-1 / IEC 61010-1 Règles de sécurité pour appareil électriques de mesurage, de régulation et de laboratoire - Partie 1 Exigences générales		
Compatibilité électromagnétique				
Immunité aux interférences		Convient aux zones industrielles		
Émissions transitoires		Classe B; convient pour une utilisation dans les zones résidentielles et les zones directement connectées à un réseau basse tension qui alimente (également) des bâtiments résidentiels.		
Conditions ambiantes				
Salles de laboratoire standard				
Site d'installation selon IEC 60259-1, altitude maximale audessus du niveau de la mer	m	3000	3000	
Utilisation à l'intérieur uniquement				
Température				
En fonctionnement	°C	+5 - +40	+10 - +30	
En fonctionnement pour les appareils ayant fait l'objet d'une évaluation de conformité : voir les informations figurant sur la plaque d'identification de l'appareil				
Pendant le stockage et le transport	°C	-20 - +60		
Humidité relative				
A des températures allant jusqu'à 31° C	%	80	80	
Puis diminution linéaire de 80% à 31° C à 50% à 40° C				

Pas de chaleur provenant de systèmes de chauffage ou de la lumière directe du soleil, de courants d'air provenant de fenêtres ouvertes, de systèmes de climatisation ou de portes, de vibrations, de zones de "trafic intense" (personnel), de champs électromagnétiques, d'air sec

Interfaces

Spécifications de l'interface COM-RS232


Type d'interface : Interface série

Fonctionnement de l'interface : Full

Niveau: RS232

Connexion: Connecteur D-sub, 9 broches

Affectation des broches :

Pin 1: Non affectée

Pin 2: Sortie de données (TxD)

Pin 3: Entrée de données (RxD)

Pin 4: Non attribuée

Pin 5: Masse interne

Pin 6: Non affectée

Pin 7: Clear to Send (CTS)

Pin 8: Request to Send (RTS)

Pin 9: Non affectée

Spécifications de l'interface USB-A

Communication: Hôte USB (maître)

Appareils connectables: Imprimantes Sartorius, clés USB avec mise à jour du logiciel

Spécifications de l'interface USB-B

Communication: Dispositif USB (esclave)

Type d'interface : Interface sérielle virtuelle (port COM virtuel, VCP) et communication "PC direct"

Spécifications de l'interface USB-C (balances micro et semi-micro à haute capacité)

Communication: Port orienté vers le bas (DFP), hôte USB (maître)

Communication: Connexion RS232 avec l'accessoire YCC-USB-C-D09M

* Câble adaptateur RS232 YCC-USB-C-D09M disponible pour les balances micro et semi-micro de grande capacité

Matériaux

Boîtier: Aluminium moulé sous pression, plastique PBT, verre flotté Optiwhite et acier inoxydable 1.4401 | 1.4404, poignées PA, garniture en aluminium

Unité de contrôle : Aluminium moulé sous pression, peint, verre flotté et plastique PBT, PP

Horloge Intégrée

Déviation maximale par mois (RTC): 30 s

Batterie de Sauvegarde

Pile au lithium : type CR2032

Durée de vie à température ambiante, minimum : 10 ans

Valeur de la mémoire Alibi

Nombre maximum d'enregistrements de données : 300,000

Mémoire de la piste d'audit

Nombre maximum de points de données : 300,000

Progiciels

Code	Objet
QP1	QAPP Pharma
QP2	QApp Advanced
QP3	Qapp Utilitaires
QP4	QApp Connectivité
QP10	QApp Equipement

Draft Shields

Code	Objet
0	Plateau de pesée plat en acier inoxydable sans paravent pour le pesage de modules
A	Paravent automatique, motorisé en verre, avec capacité d'apprentissage pour une utilisation conviviale et une adaptation facile aux exigences changeantes des différentes applications
E	Paravent manuel en verre pour les balances de précision
F	Paravent manuel en acier inoxydable pour le pesage de filtres d'un diamètre allant jusqu'à 50 mm (plateaux de 75 mm et 90 mm en option)
I	Identique au paravent A, mais avec un ionisateur intégré pour éliminer les charges électrostatiques gênantes sur les échantillons et les conteneurs d'échantillons
M	Paravent automatique, motorisé, rond, 100 % verre avec capacité d'apprentissage pour les balances ultra-micro et les micro-balances
R	Paravent plat en acier inoxydable (amovible, sans composants en verre) pour toutes les balances de précision
U	Chambre d'analyse manuelle à paravent en verre, avec des portes à action douce qui s'ouvrent largement et permettent d'accéder librement à la chambre de pesée sans qu'il y ait d'obstacles
D	Paravent manuel en verre avec ionisateur et moteurs homologués

Dimensions Intérieures du Paravent

Version du Bouclier	Profondeur (mm)	Hauteur (mm)	Largeur (mm)
F	-	33	Ø 109
M	-	67	Ø 80
U	191	261	193
I and A**	154	250	192
E	191	172	193
R	154	275	154
D	159	234	185

^{**} max. 500 000 cycles d'ouverture/fermeture garantis si l'entretien est effectué à intervalles réguliers de 100 000 cycles

Agréments

Code	Objet	
SØØ	Version standard non vérifiée, toutes les unités	
SØ1	Version standard non vérifiée, unités métriques uniquement	
CCN	Balance avec certificat d'approbation de type pour la Chine	
CEU	Bilan vérifié avec le certificat d'homologation CE (pour l'UE sauf la France)	
CFR	Bilan vérifié avec le certificat d'homologation CE pour la France uniquement	
OBR	Balance avec certificat d'homologation pour le Brésil	
OIN	Solde avec certificat d'homologation pour l'Inde	
OJP	Balance avec certificat d'homologation pour le Japon	
ORU	Balance avec certificat d'homologation pour la Russie	

Accessoires

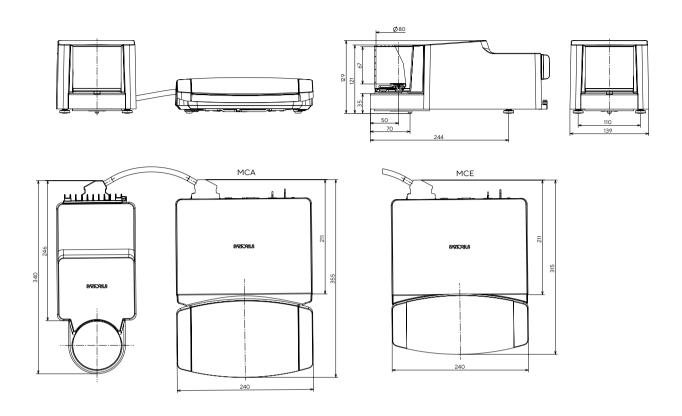
Imprimantes et Communication	Quantité	Cat. Non.
Imprimante à transfert thermique pour les impressions BPF BPL sur papier continu et étiquettes	1	YDP30
Imprimante à transfert thermique de laboratoire YDP30 avec connexion USB et Ethernet	1	YDP30-NET
Adaptateur USB sans fil Nano	1	YWLAN01MS
WIFI Nano Router	1	YWLAN02MS
Ruban encreur et papier standard, set, 90 m, pour YDP30	1	69Y03285
Ruban encreur et papier autocollant, 90 m, pour YDP30	1	69Y03286
Papier thermique standard, rouleau de 24 m, pour YDP30 YDP40	5	69Y03287
Papier thermique autocollant, rouleau de 13 m, pour YDP30	5	69Y03288
Étiquettes autocollantes pour YDP30		
58 mm×100 mm	350	69Y03094
58 mm×76 mm	500	69Y03093
58 mm×30 mm	1000	69Y03092
Affichages et éléments d'entrée et de sortie		
Affichage MCE	1	69MS0218
Tête d'affichage MCA pour balances avec paravent automatique	1	69MS0212
Tête d'affichage MCA pour les balances sans paravent automatique	1	69MS0215
Affichage MCA pour les balances de grande capacité (y compris l'adaptateur courte distance)	1	69MS0216
Détecteur de mouvement avec câble de connexion USB	1	YHS02USB
Support d'affichage pour les cellules de pesée avec un échelon de 100 mg 1 g et une capacité de pesage > 20 kg pour soulever l'unité de commande	1	YDH04MS
Support d'affichage pour les cellules de pesée avec un échelon de 10 mg 100 mg pour surélever 'unité de commande	1	YDH03MS
Lecteur de codes-barres et de QR avec USB	1	YBR05
Interrupteur à pédale pour paravent, tare et impression	1	YFS02

Accessoires (suite)

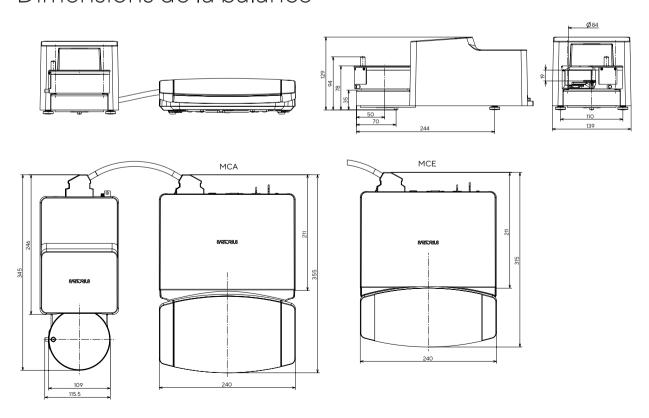
Matériel pour l'étalonnage des pipettes (balances analytiques)	Quantité	Cat. Non.
(it d'étalonnage de pipettes (matériel). Comprend un piège à humidité et tous les adaptateurs nécessaires.	1	YCP04MS
Kits de détermination de la densité		
Kit de détermination de la densité des solides et des liquides pour les modules de pesage de 0,1 et 0,01 mg	1	YDK03MS
Kit de détermination de la densité des solides et des liquides pour les modules de pesage de 1 mg	1	YDK04MS
Puits de filtration, ioniseur et pèse-personne		•
Plateau à grille pour modèle avec un échelon de 10 mg ou 100 mg pour le pesage dans les nottes de laboratoire, les armoires de pesage de sécurité et les établis, surface d'attaque du plateau de pesée réduite par le vent, remplace le plateau standard	1	YWP07MS
Plateau de pesée antistatique, diamètre 100 mm, pour module de pesée pour balance semi-micro et pour balance d'analyse avec échelon 0,1 mg ou 0,01 mg	1	YWP04MS
Plateau de pesée à filtre en titane, diamètre 52 mm, pour les balances ultra-micro et micro uniquement avec le paravent F	1	YSH34
Plateau de pesée à filtre en titane, diamètre 75 mm, pour les modèles de balances ultra-micro ou nicro uniquement avec le paravent F	1	YSH35
Porte-tubes Safe-lock pour tubes de réaction jusqu'à un volume de 2 ml, pour les balances ultra-micro ou micro uniquement avec le paravent F	1	YSH13
Porte-tubes Safe-lock pour tubes de réaction, jusqu'à un volume de 2 ml, pour les balances d'analyse	1	YSH15
Porte-tube Safe-lock pour tubes de réaction plus grands jusqu'à un volume de 5 ml, pour les palances d'analyse	1	YSH19
Porte-flacon pour tubes coniques, tubes à centrifuger, tubes à fond rond et tubes à essai jusqu'à 40 ml de volume, pour balances d'analyse		YSH23
Support pour récipients de titrage, flacons à fond rond et tubes à essai d'un diamètre allant usqu'à 50 mm, pour balances d'analyse	1	YSH37
Plateau de pesée à filtre en titane, diamètre 90 mm, pour les modèles de balances ultra-micro ou nicro uniquement avec le paravent F	1	YSH36
ouffleur ionisant pour les échantillons chargés électrostatiquement	1	YIB01-ODR
oniseur avec électrode en U pour 230 V	1	YIB02-230V
oniseur avec électrode en U pour 115 V	1	YIB02-115V
tylo d'ionisation Stat-Pen pour la décharge d'échantillons chargés électrostatiquement	1	YSTP01
onisateur compact en forme de U pour 230 V/115 V	1	YIB03-C
Coupelles de pesée en aluminium, 4,5 mg pour les modèles de balance ultra-micro et de balance micro	250	6565-250
Coupelles de pesée en aluminium, 52 mg pour les modèles de balance ultra-micro et de balance micro	50	6566-50
elle de pesée en acier au chrome-nickel, L 90 mm × L 32 mm × H 8 mm	1	641214

Accessoires (suite)

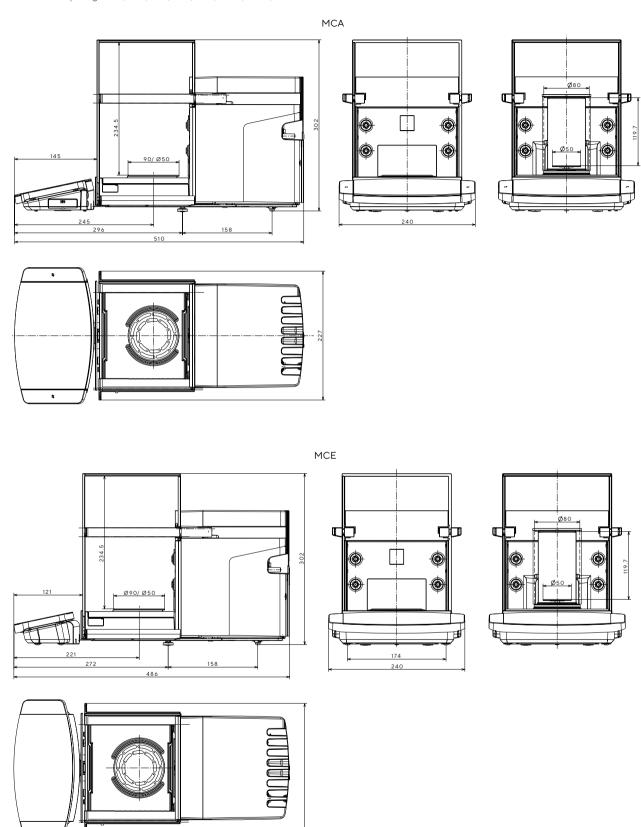
Autres accessoires	Quantité	Cat. Non.
Câble d'affichage, 3 m, pour l'installation séparée de l'écran MCE ou MCA et de l'unité de pesage, installation par le service après-vente Sartorius ou à l'usine	1	YCC01-MCD3
Câble RS232 9 broches vers entrée M12 pour connecter les pompes Watson-Marlow 530DuN et 630DuN, 2 m	1	YCC-D09M-M12F- 2M
Câble RS232 9 broches (mâle) vers 9 broches (mâle) pour connecter par exemple la pompe Watson-Marlow 323Du, 2,9 m	1	YCC-D09MM-EC- 2.9M
Câble DSUB25 DIO vers USB pour connecter par exemple un feu de signalisation, 0,5 m	1	YCC01-MC05
Câble d'extension Ethernet, 1 m	1	YCC-RJ45-CAT7
Câble de connexion RS232C, 9 broches mâle à 9 broches femelle, 1,5 m	1	YCC-D09MF
Crochet de pesée pour les balances de précision avec un échelon de 100 mg 1 g et une étendue de pesée > 20 kg, pas pour les modèles approuvés pour l'utilisation en usage réglementé	1	69EA0040
Sartorius Wedge, logiciel pour la communication des données entre l'ordinateur et la balance	1	YSW02
Set d'étalonnage de pipettes micro balances	1	VF988
Voyant lumineux pour les affichages MCE et MCA	1	VF4763
Câble de connexion pour eBox 1,2 m 2,5 m	1	VF4755
Câble d'extension pour la tour climatique 0,8 m	1	VF4756
Câble d'extension pour détecteur de mouvement 0,8 m	1	VF4757
Câble de connexion pour le fermenteur	1	VF4758
Convertisseur analogique RS232	1	VF4759
YRB11Z modifié pour les balances Cubis®	1	VF4476
Batterie externe	1	YRB11Z
Tables de pesée		
Fabriqué en pierre synthétique, avec amortissement des vibrations	1	YWT03
Fabriqué en bois avec des pierres synthétiques	1	YWT09
Console murale	1	YWT04
Modules climatiques		
Module climatique, non calibré, pour paravent A et interface utilisateur MCA	1	YCM20MC
Etalonnage d'un module climatique YCM20MC avec certificat d'étalonnage DAkkS	1	YCM20DAkkS
Module climatique avec certificat d'étalonnage DAkkS pour paravent A et interface utilisateur MCA	1	YCM20MC-DAkkS
Tour pour module climatique, pour montage YCM20MC; y compris module climatique YCM20MC; adaptable à tous les modules de pesage Cubis° II avec interface utilisateur MCA	1	YCM20MC-Tower

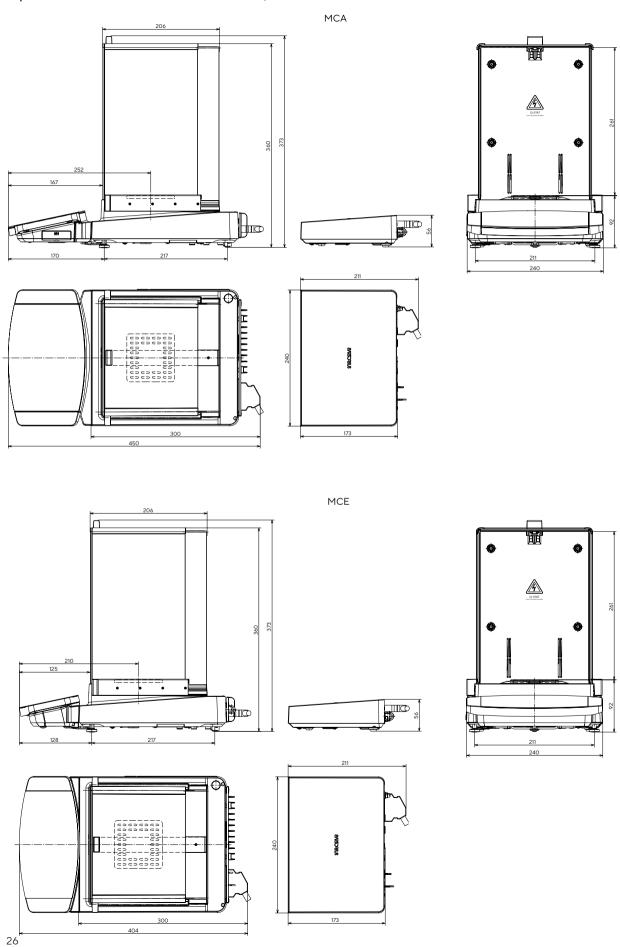

Accessoires (suite) Les modules de pesage 36S, 36P, 66S, 66P, 116S, 226S, 225S, 225P et 125S

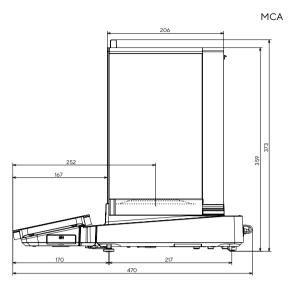
Options matérielles*	Quantité	Cat. Non.
Licence pour ioniseur et paravent motorisé	1	QP10
Licence d'ionisation	1	QAPP1001
Permis de port d'un paravent motorisé	1	QAPP1002
Paravent intérieur		
Motorisé	1	YDS125A
Manuel	1	YDS125U
Base en verre, pour réduire la hauteur du compartiment de pesage	1	YDSHR
Paravent extérieur		
Paravent extérieur de la porte gauche	1	YCCDSL
Paravent extérieur de la porte droite	1	YCCDSR
Paravent extérieur de la glissière de protection	1	YCCDSU
Paravent extérieur du panneau avant	1	YCCDSF
Affichages et éléments d'entrée et de sortie		
Détecteur de mouvement avec câble de connexion USB	1	YHS02USB
(it de détermination de la densité		
(it de détermination de la densité pour les solides et les liquides	1	YDK03MC
Matériel pour l'étalonnage des pipettes		
(it d'étalonnage de pipettes. Comprend un piège à humidité et tous les adaptateurs nécessaires	1	YCP07MC
Plateaux de pesée et porte-échantillons en titane		
Plateau de pesée de 90 mm, fendu	1	YWP10-3
Plateau de pesée de 50 mm, fendu, avec plaque de protection pour 50 mm	1	YWP09-3
Porte-échantillon réglable pour des récipients jusqu'à 50 ml	1	YSH02-3
Pour les stents coronaires (jusqu'à 38 mm)	1	YSH12-3
our tubes "save-lock", 1.5 mL - 2 mL	1	YSH14-3
our tubes save-lock jusqu'à 5 ml	1	YSH18-3
Pour les flacons	1	YSH22-3
Pour peser les bateaux	1	YSH26-3
Pour les filtres de 150 mm de diamètre	1	YSH30-3
Pour les filtres jusqu'à 75 mm	1	YSH35-3
Pour les récipients de titrage et les flacons à fond rond	1	YSH47-3
Pour les seringues, verticales	1	YSH46-3
Autres accessoires		
Câble de connexion pour l'écran de contrôle, longueur 3 m	1	YCC01-MCD3-3
Housse de protection Cubis® II MCE ultra-haute résolution	1	YDCC2MCE
Housse de protection Cubis® II MCA ultra-haute résolution	1	YDCC2MCA
Kit de nettoyage	1	YCK01MC

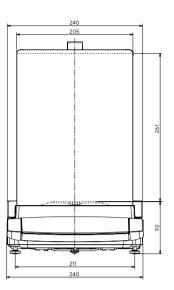

 $^{^*\}text{Licence après achat d'options matérielles pour les balances micro et semi-micro de grande capacité avec MCA Display uniquement$

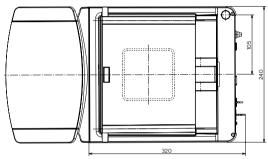
Accessoires (suite)

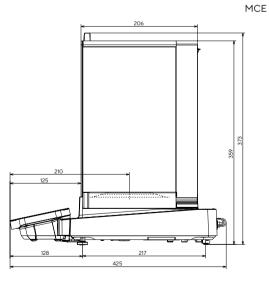

Porte-échantillons en titane		Quantité	Cat. Non.	Type balances
Porte-échantillon réglable pour des récipients jusqu'à 50 ml		1	YSH02-3	Micro et semi-micro de grande capacité semi-micro
Pour les stents coronaires (jusqu'à 38 mm)	7	1	YSH12-3	Micro et semi-micro de grande capacité semi-micro
	Ĭ		YSH10	Ultra-micro et micro
Pour tubes "save-lock", 1.5 mL - 2 mL	*	1	YSH14-3	Micro et semi-micro de grande capacité semi-micro
	Ţ		YSH13	Ultra-micro et micro
	•		YSH15	Analyse et pesage module 125P
Pour tubes save-lock jusqu'à 5 ml	94	1	YSH18-3	Micro et semi-micro de grande capacité semi-micro
	Ť		YSH19	Analyse et pesage module 125P
Pour flacons		1	YSH22-3	Micro et semi-micro de grande capacité semi-micro
	Ť		YSH23	Analyse et pesage module 125P
Pour peser les bateaux		1	YSH26-3	Micro et semi-micro de grande capacité semi-micro
	Ť		YSH26	Analyse et pesage module 125P
Pour filtres, diamètre 150 mm)	YSH30-3	Micro et semi-micro de grande capacité semi-micro
			YSH30	Analyse et pesage module 125P
Pour filtres jusqu'à 75 mm	AP.	1	YSH35-3	Micro et semi-micro de grande capacité semi-micro
			YSH35	Ultra-micro et micro
Pour filtres jusqu'à 50 mm	Ī		YSH34	Ultra-micro et micro
Pour filtres jusqu'à 90 mm			YSH34	Ultra-micro et micro
Pour les récipients de titrage et les flacons à fond rond		1	YSH47-3	Micro et semi-micro de grande capacité semi-micro
				Analyse et pesage module 125P
Pour les seringues, verticales	4	1	YSH46-3	Micro et semi-micro de grande capacité semi-micro
			YSH46	Analyse et pesage module 125P

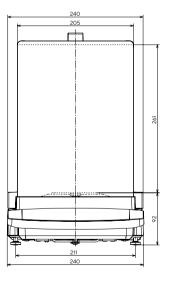


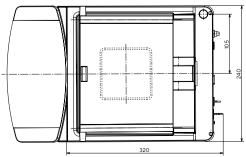

Dimensions de la balance

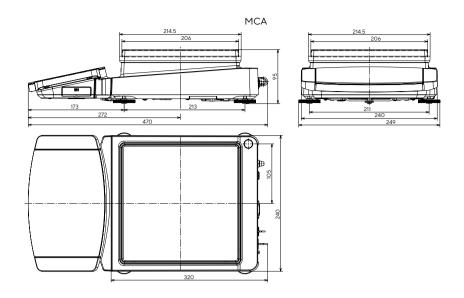


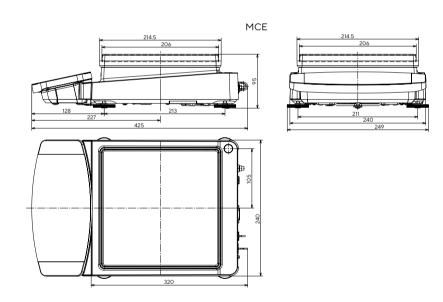

Balances de Grande Capacité et Semi-micro | Toutes les dimensions sont données en millimètres Modules de pesage 36S, 36P, 66S, 66P, 116S, 226S, 225S, 225P et 125S

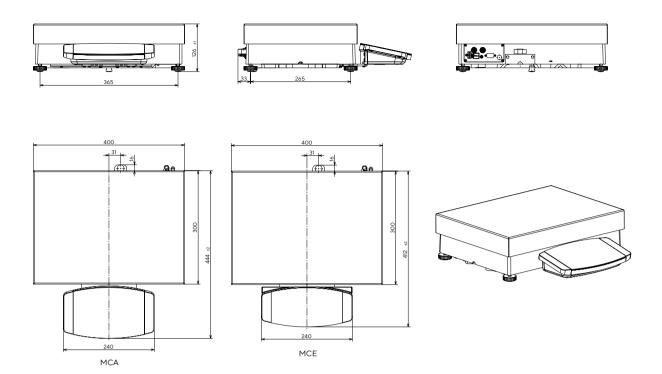












Balance à Grande Capacité | Toutes les dimensions sont données en millimètres

Ventes et services Contacts

Pour plus d'informations, consultez le site suivant www.sartorius.com

Allemagne

Sartorius Lab Instruments GmbH & Co. KG Otto-Brenner-Strasse 20 37079 Goettingen Téléphone +49 551 308 0

États-Unis

Sartorius Corporation 3874 Research Park Dr. Ann Arbor, MI 48108 Phone +1 734 769 16006

France & Suisse Romande

Sartorius France S.A.S.
2, rue Antoine Laurent de Lavoisier,
Zone d'Activité de la Gaudrée
91410 Dourdan
Téléphone +33170 625000

Belgique

Sartorius Belgium SA Ariane 5 Building - Aile HO Avenue Ariane 5 1200 Woluwe-Saint-Lambert Belgium Téléphone : +32 2 756 06 80