
A
s the biotech industry
moves toward implement-
ing the initiative of
Quality by Design, using

statistical tools for design of experiments
and for data analysis is becoming neces-
sary. It has been pointed out that bio-
pharmaceutical manufacturing data is
complex and univariate or bivariate
analysis can often be inefficient and
result in misleading conclusions.1,2

Principal component analysis (PCA), par-
tial least squares (PLS), and multiple
regression are some of the commonly
used projection and regression methods
in MVDA. Additionally, multivariate sta-
tistical process control (SPC) charts are
useful in routine monitoring of manufac-
turing processes.

Recently, several studies have
addressed the topic of performing multi-
variate analysis on data from fermenta-

tion and cell culture operations.3–5 This
article is the tenth in the “Elements of
Biopharmaceutical Production” series and
presents how four of the major biotech
companies, Amgen, Genentech, Wyeth
Biotech,  and MedImmune, are using
multivariate analysis to solve problems
encountered in biotech processing.

USE OF MVDA TO OPTIMIZE 
LARGE-SCALE PRODUCTION 
CULTURE PERFORMANCE
Rob Johnson and Oliver Yu, Genentech, Inc. 
The multiple linear regression of historical
data from a licensed antibody process
revealed opportunities for improved produc-
tion culture performance and more consis-
tent product quality by optimizing process
parameters in their acceptable ranges stated
in the product filing. This application
demonstrates the utility of MVDA for capi-
talizing on these opportunities for a signifi-
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cant increase in production culture
yield and a sustained decrease in
process variability.

At the start of the third manu-
facturing campaign of a commer-
cial antibody process, production
culture productivity was 70% of
the previous campaign average, as
shown in Figure 1. This observed
decrease in culture productivity
and increase in process variability
led to an effort to understand and
reduce the sources of variability
in the process. 

The multivariate approach
used here was simple multiple
linear regression (MLR)
achieved in an iterative back-
wards stepwise fashion against
data from the previous cam-
paign.  The assumption of lin-
earity is often acceptable since
nonlinear relationships are
well-approximated by a line
when constrained in a small
range, as is the case for com-
mercial production. The itera-
tive backwards stepwise
approach minimizes expert
bias because the computer iter-
ates toward maximum correla-
tion and minimum model error. 

Expert bias exists in the selection of
initial factors to include in the model,
but this bias is often constrained to a set
of actionable parameters, which can be
addressed on the production floor to
mitigate unexpected process behavior.
The inclusion of nonactionable factors
in the model, such as maximum lactate
production or initial glucose uptake
rate, yields scientifically relevant ideas
for further investigation, but is not as
useful for immediately improving pro-
duction culture performance and
achieving production campaign targets.
Actionable process parameters were
studied from 25 batches of campaign 2
of this antibody process and were used
to build the model shown in Figure 2,
Table 1A, and Table 1B.

We know from our historical experi-
ence that models with an adjusted R2 of
0.76 and the root mean square error
(RMSE)of 91 are capable of supporting

Figure 1. Control chart of an antibody process shows production cultures performing at
70% of the previous campaign
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Figure 2. Multiple linear regression model built on data from campaign 2 (model
generated using JMP 6.0)

Summary of fit

RSquare 0.841862

RSquare adj 0.762793

Root mean square error 91.17209

Mean of response 1044.8
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Production culture performance
predicted p<.0001 RSq=0.84 RMSE=91.172

Table 1A. Parameter estimates for data presented in Figure 2.

Parameter estimates

Term Estimate Std error t Ratio Prob>|t |

Intercept 24830.71 13303.51 1.87 0.0804

Initial concentration 21.231987 7.051392 3.01 0.0083*

Culture timing 1 -155.3026 174.566 -0.89 0.3868

Culture timing 2 546.73332 188.1104 2.91 0.0103*

Culture timing 3 1.9409029 1.699762 1.14 0.2703

Operating parameter 1 -3590.111 1901.787 -1.89 0.0773

(Initial concentration:13.5665) x
(Culture timing 3:242.563)

0.8945541 0.47628 1.88 0.0787

(Initialconcentration:13.5665) x
(Operating parameter 1:6.95574)

-906.6274 411.3248 -2.20 0.0425*

(Culture timing 1:0.76612) x
(Culture timing 3:242.563)

-29.51671 10.61991 -2.78 0.0134*

*Significant main effects and interactions that impact cell culture productivity
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data-based deci-
sions. The linear
equation was
solved to deter-
mine the magni-
tude and direction
of parameter
change necessary
to maximize cul-
ture performance.

We re-opti-
mized the parame-
ters to maximize
culture productiv-
ity and minimize a
product quality
attribute (in this
case with a maxi-
mum but no mini-
mum specification).
The model achieved
an optimum and prescribed specific targets for
these parameters.

Figure 3 indicates the actions required to
achieve this optimum:
• Increase initial concentration of a

production culture parameter
• Decrease the time at which culture operation

1 occurs

• Increase the time at which culture operation
2 occurs

• Increase the time at which culture operation
3 occurs

• Decrease the set point of operating parameter 1.
The parameter changes were implemented

incrementally and thus resulted in a gradual
improvement in culture productivity.

Process Development & Control

Table 1B. Scaled estimates for data presented in Figure 2.

Scaled estimates

Continuous factors centered by mean, scaled by range/2

Term Scaled estimate Std error t Ratio Prob>|t |

Intercept 1019.2476 20.20316 50.45 <.0001*

Initial concentration 150.61441 50.02081 3.01 0.0083*

Culture timing 1 -47.56141 53.46083 -0.89 0.3868

Culture timing 2 211.03038 72.60763 2.91 0.0103*

Culture timing 3 91.222438 79.88882 1.14 0.2703

Operating parameter 1 -77.48656 41.0469 -1.89 0.0773

(Initial concentration:13.5665) x
(Culture timing 3:242.563)

298.24994 158.7947 1.88 0.0787

(Initial concentration:13.5665) x
(Operating parameter 1:6.95574)

-138.8108 62.97662 -2.20 0.0425*

Figure 3. The model generates the direction and magnitude for each factor in order to maximize production culture
performance and minimize a product quality attribute.
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Figure 4 demonstrates the gradual improve-
ment in culture performance during campaign
3, which ultimately resulted in production of
104% of the campaign goal.  While campaign 3
of this antibody process met goals through
incremental parameter changes, the process
variability was unacceptably large at 25% rela-
tive standard deviation (RSD). For the fourth
campaign, the process parameters were evalu-
ated and targets were reset with capability in
mind. Most parameters remain changed in the
direction prescribed by the MLR, but the mag-
nitude decreased in order to maintain capabil-
ity and minimize process variability. 

Campaign 4 reliably achieved its production
goals and produced 110% of the campaign goal
with a productivity improvement of 10% over
campaign 3, sustained product quality, and a
15% decrease in process variability. This is
shown in Figure 5. 

As shown in this application, MVDA can be a
useful tool for continuous process improve-
ment and long-term process understanding.
Furthermore, it can be used for process opti-

mization to reduce process vari-
ability and achieve predictable
performance.

USE OF MVDA FOR
ESTABLISHING PROCESS
COMPARABILITY AND
TROUBLESHOOTING
Alime Ozlem Kirdar and Anurag
Rathore, Amgen Inc.
This application involved multi-
variate analysis of data from
small-scale (2-L) and large- scale
(2000-L) cell culture batches.3 A
commercially available MVDA

software package, SIMCA P+ 11 version
11.0.0.0 (Umetrics AB, Kinnelon, NJ), was used
to perform the multivariate analysis. Daily
offline metabolic and cell growth measure-
ments from 14 center point runs (2-L scale) and
11 center point runs (2000-L scale batches)
were analyzed separately by partial least squares
(PLS) modeling. Several input parameters
(pCO2, pO2, glucose, pH, lactate, ammonium
ions) and output parameters (percent purity,
viable cell density, percent viability, osmolality)
were included in the analysis.3 Loadings plot
and variable importance for the projection
plots were used to evaluate process comparabil-
ity across scales.

The loadings plot shows the PLS loadings com-
puted for each of the x variables. The variables
with the largest absolute values of principal com-
ponents (p1 or p2) are situated far away from the
origin (on the positive or negative side) on the
plot and dominate the projection. The farther we
are from the center (0,0) in the loadings plot, the
greater the impact of input parameters on the
performance of the cell culture or the greater the

Figure 4. Performance of campaign 3 shows initial lower-than-expected productivity
that was overcome by process parameter changes.  The variability of culture
performance was 25% RSD.

Qual Campaign 1 Campaign 2 Campaign 3

Pr
od

uc
tio

n 
cu

ltu
re

 p
er

fo
rm

an
ce

Figure 5. Performance of campaign 4 shows sustained high culture performance with low variability; 
Relative standard deviation = 9.8%.
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impact of the cell culture process on the
output parameter. Also, variables near
each other (in the same quadrant) are
positively correlated and those opposite
to each other (opposite quadrants) are
negatively correlated.3

Figure 6A presents this plot for data
from the 2-L scale. It is seen that the
cell culture process has a significant
impact on viable cell density (VCD),
titer, and viability. Titer and VCD are in
the same quadrant and this is sup-
ported by the observation that both of
them are lower in the earlier stages of
the culture and increase as the culture
progresses. In contrast, viability and
VCD are in the opposite quadrants and
this implies that at earlier stages of the
culture, when the VCD is lower, the
viability is higher and this reverses in
the latter part of the process. Of all the
input parameters examined, pH, pCO2,
glucose, and lactate levels have a signif-
icant effect on the performance of the
cell culture process. Also, pH, glucose,
and pCO2 levels have a similar effect
on the performance of the cell culture
process, whereas lactate has the reverse
effect. Figure 6B presents the loadings
plot for the data from the 2000-L scale.
For most of the output parameters—
namely titer, VCD, and purity—the
plot in Figure 6B is quite comparable
with that in Figure 6A. However, differences are
seen for the loadings of pO2, osmolality, NH4+,
and lactate levels, suggesting changes in the cell-
culture metabolism upon scale up. It is well
known in the literature that gas transfer is less
efficient at large scale leading to a build up of
CO2 in the vessel. This results in an increased
use of base in order to maintain pH at the
intended set point, and the increased base addi-
tion leads to higher osmolality. Metabolic
response of cells can also be amplified, which
may lead to higher NH4+ and lactate levels.6–7

These observations led to further investigation
of the differences observed during scale up and
correction of some of those differences. 

Variable importance for the projection (VIP)
plot shows the relative importance of each vari-
able included in the analysis. Figure 7A presents
this plot for the 2-L scale data set. Consistent
with the observations made from the correspon-
ding loadings plot (Figure 6A), it is seen that this
cell-culture process has a strong influence on the

titer, VCD, and viability of the broth at the end
of the process. Of the input parameters, pH, lac-
tate, and glucose levels were found to have the
greatest effect on process performance. On the
contrary, osmolality has one of the lowest load-
ings in both principal component directions (p1
and p2). Figure 7B presents the VIP plot for the
the 2000-L scale data set. Comparison of the VIP
plot for  the 2-L and 2,000-L data yields similar
conclusions as mentioned above for discussion
of the loadings plots. The most significant differ-
ence is seen in the VIP score for pO2 for the rea-
sons mentioned above.

In summary, it is shown that MVDA can be a
useful tool for evaluating process comparability
across scales, equipment, or facilities. Although
the loadings plot provides a qualitative assess-
ment, the VIP plot is more quantitative. Data
analysis can easily be used for troubleshooting
issues encountered during scale up or technol-
ogy transfer by identifying the differences and
helping focus the investigation. 

Process Development & Control

Figure 6A.  Partial least squares loadings plots for a 2-L bioreactor3
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Figure 6B.  Partial least squares loadings plots for a 2,000-L bioreactor3
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USE OF MVDA FOR ROUTINE MONITORING 
OF MANUFACTURING PROCESSES
Alagappan Annamalai, Wyeth Biotech
In this multivariate statistical process control (SPC)
application, MVDA was performed on the data

from a legacy protein purification process.
Custom software was developed at Wyeth
Biotech in the form of an Excel add-in to cre-
ate two kinds of multivariate control charts,
Hotelling’s T2 and multivariate exponen-
tially weighted moving average
(MEWMA).8–10 Hotelling’s T2 monitors
individual process observations while
MEWMA monitors shifts and drifts in the
process. Process data residing in Excel work-
sheets can be used directly with the software.
The software interfaces Excel with custom-
developed functions and the run-time ver-
sion of MATLAB (The MathWoks, Inc.,
Natick, MA) through a component object
model (COM) object.11 Excel serves as the
user interface while the MATLAB functions
perform the multivariate calculations. The
Excel add-in was developed using Visual Basic
for Applications (VBA) and the COM object
was developed using Visual C++. 

Eight parameters of the protein purifica-
tion process were examined initially. Those
parameters were harvest volume, harvest
amount, CSulf RP-HPLC, B-sepharose recov-
ery, overall recovery, specific activity, pep-
tide map sub-unit percent, and DS rapid
acidic C4 RP-HPLC. We used 100 process
vectors in the training set and then moni-
tored the next one hundred vectors.
Hotelling’s T2 produced one signal for the
monitoring observation 71. The bivariate
plot between harvest amount and CSulf RP-

HPLC in Figure 8 shows that observation 71
undoubtedly is an outlier. Harvest amount and
CSulf RP-HPLC measure the amount of protein
between two successive process steps and exhibit
a very high correlation. Because of the high corre-
lation, we repeated the multivariate statistical
process control calculations after excluding the
parameter “harvest amount” but using the
remaining seven parameters. Interestingly, this
too flagged observation 71 as an outlier. During
the seven-parameter training phase, the two
observations above the training T2 limit in Figure
9 were discarded and the remaining 98 observa-
tions were used to estimate the covariance
matrix. It is surprising to note that the theoretical
MEWMA limit for a typical ARL of 370 (α =
0.0027) with γ = 0.1 was found to be too tight in
Figure 10. In Figures 11 and 12, both the first 100
training observations and the next 100 monitor-
ing observations are plotted. As noted above, T2

for the monitoring observation 71 exceeds the
control limit in Figure 11. Despite the theoretical

Process Development & Control

Figure 7A.  Variable importance for the projection (VIP) plots for a 2-L
bioreactor. Adapted from reference 3.
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Figure 7B.  Variable importance for the projection (VIP) plots for a 2,000-L
bioreactor. Adapted from reference 3.

Ti
te

r

VC
D

BG
A 

pH

BG
A 

pO
2

Gl
uc

os
e

La
ct

at
e

Vi
ab

ili
ty

NH
4+

Os
m

ol
al

ilt
y

BG
A 

pC
O 2

Pu
rit

y

VI
P

Figure 8.  Bivariate plot showing an outlier
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MEWMA limit being too tight, Figure 12 indi-
cates that the process has drifted from the
process mean calculated with the training data.

The mean square of successive differences
(MSSD) was used to remove the influence of
process drifts in the covariance estimates.12–14

Hotelling’s T2 chart in Figure 13 based on
MSSD suggests that a process shift occurred
during the second half of the training data and
persisted throughout. MSSD appears to be too
sensitive for T2 but we do not know if this will
be true for a large training data set or for other
biopharmaceutical processes. At present, a con-
trol limit for MEWMA calculated with MSSD
can be set only arbitrarily, as done in Figure 14.

We have shown that multivariate statistical
process control (SPC) tools are useful in ongoing

monitoring of manufacturing processes. These
tools can provide early warning of process prob-
lems before they become severe. In this case
study, Hotelling’s T2 identified an unusual pro-
duction batch (observation 71) during monitor-
ing that would have otherwise gone unnoticed.
This scenario is possible for multiple consecutive
batches also. MEWMA revealed small process
drifts that were previously hidden. Understanding
the origins of these drifts will provide opportuni-
ties to improve the process further. 

USE OF MVDA FOR RAW MATERIAL
CHARACTERIZATION AND SCREENING
Sanjeev Ahuja and Kripa Ram, MedImmune
Many industrial mammalian-cell-growth media
rely upon the inclusion of a serum fraction,

Figure 9. Hotellingʼs T2 chart during training

 

Figure 10. Multivariate exponentially weighted moving average chart during training
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commonly known as the lipoprotein fraction, to
ensure the availability of cholesterol to the cells.
The cholesterol contained in such serum frac-
tions is associated with various lipoproteins that
act as carriers of cholesterol. The lipoproteins
also provide a means by which the cholesterol
can be solubilized in a hydrophilic environment.
Since these fractions are derived from serum, it is
likely that the compositions of these fractions are
highly variable, which, in turn, can contribute to
the variation in process outcome and product
quality attributes. To understand this raw mate-
rial further and how it might affect process pro-
ductivity, detailed analytical characterization and
cell culture experiments were carried out. This
case study shows how multivariate analysis can
be used to understand various lipoprotein frac-

tion products and to assist in raw material selec-
tion and control for a cell culture process.

Analytical characterization of various lipopro-
tein fraction lots involved four distinct assays:
lipid profiling, fatty acid analysis, lipoprotein
analysis, and lipid oxidation. A brief description
of these tests is given below. 
• Lipid profiling results were obtained via an

HPLC-based method for cholesterol esters
(CE), free fatty acids (FFA), free cholesterol
(FC), and phosphatidylcholine (PC). The total
cholesterol (TC) values were derived from the
results of free cholesterol and cholesterol
esters. The levels of total cholesterol for all the
tested lots lay in the presepecified range
required for raw material release. 

• Fatty acid analysis was performed via a GC

Process Development & Control

Figure 11. Hotellingʼs T2 chart during monitoring
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Figure 12. Multivariate exponentially weighted moving average chart during monitoring
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method and quantitative results were
obtained for non-essential, n-6 essential, and
n-3 essential fatty acids. The results for  [n-
6]:[n-3] ratios and total fatty acids (TF) were
subsequently calculated. 

• Various lipoproteins were identified by an
SEC technique. The three distinct species in
these fractions included high density lipids
(HDL), low density lipids (LDL), and very
low density lipids (VLDL). The ratios
LDL:HDL and VLDL:HDL were derived from
the original data. 

• The extent of lipid oxidation (LO) was also
determined because it can affect the cell
productivity. 
A total of 16 analytes were tested for each lot

using the above-mentioned assays.
It is difficult to predict how the composition

might be related to cell productivity because
the individual effects of each of the tested ana-
lytes on the cell culture performance is poorly
understood. Also, it is impractical to conduct
experiments to evaluate the effects of various
components because of their biological com-
plexity and solubility issues. The use of multi-
variate analysis, however, offers a methodology
by which the lot-to-lot variability of the above-
mentioned complex raw material can be
assessed. It also provides a method to integrate
all the analytical data and to understand the
key analytical differences between products
from different vendors. Moreover, the number
of available lots and analytical and experimen-
tal resources are often limited, which makes the
use of multivariate analysis particularly useful.
Finally, as will be discussed later, it can be used

to identify the key raw material quality attrib-
utes required for desired productivity. These
quality attributes can help focus efforts in the
right direction to continually improve a raw
material and hence the manufacturing process
it is used in. For the multivariate analysis
described in this case study, the software
SIMCA-P+ (Version 11) from Umetrics, Inc.
(Kinnelon, NJ) was used.

To characterize the two products that have
been successfully used for an antibody-produc-
ing cell culture process, principal component
analysis was used. The data from a total of 17
lots—12 lots from vendor A (called product A)
and 5 lots from vendor B (called product B)—
were used for this analysis. The raw material
type (product A or product B) was treated as a
qualitative X variable and all the analytical data
was used as continuous X data. The first princi-
pal component was able to explain 61% of vari-
ation in X data (R2X = 0.61), and this
component was able to predict 54% of the vari-
ation in data (Q2 = 0.54). The addition of a sec-
ond principal component resulted in the
cumulative goodness of fit (R2X) and pre-
dictability (Q2) values of 0.77 and 0.50. Because
the addition of second principal component
decreased the model predictability to 0.50, this
component was ignored and only the first com-
ponent was used for analysis. The principal
component analysis showed that the two prod-
ucts were distinct and belonged to different
clusters in M-space. The correlation structure
was analyzed using the loading plot. Product B,
n-6 fatty acids, [n-6]:[n-3] ratio, and free fatty
acids clustered together and appeared diago-

Process Development & Control

Figure 13. Mean square of successive differences based Hotellingʼs T2 chart during monitoring
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nally opposite to the cluster containing LDL,
LDL:HDL, VLDL, VLDL:HDL, and PC. These
results suggested that compared to product A,
product B was richer in n-6 fatty acids and free
fatty acids and had a higher  [n-6]:[n-3] ratio.
On the contrary, product A was richer in n-3
fatty acids and phosphatidylcholine. Product A
also had a higher content of LDL and VLDL
and had higher LDL:HDL and VLDL:HDL ratios
compared to product B. It is likely that the dis-
similarities between products A and B are due
to the differences in starting sera that in turn
may be related to the feeding practices of differ-
ent herds used for serum production. 

To assess the feasibility of using an alternate
raw material for the process, the analytical data
of four lots from a new vendor (called product
C) was integrated in the PCA model developed
earlier. The resulting PCA model resulted in two
principal components and had a cumulative
goodness of fit (R2X) and predictability (Q2)
values of 0.71 and 0.57, respectively.
Remarkably, the new product did not appear
similar to either product tested earlier and
belonged to a distinct cluster in M-space (Figure
15). A closer analysis showed that the new
product appeared closer to product A in fatty
acid composition and closer to product B in
phosphatidylcholine content and lipoprotein
analysis. The loading plot (Figure 16) showed
that product A was uniquely identified by phos-
phatidylcholine content, LDL, LDL:HDL ratio,
VLDL, and VLDL:HDL ratio. Also, product B
was uniquely identified by the content of n-6
fatty acids and the [n-6]:[n-3] ratio. Because

product C appeared analytically different from
the other two products, a cell culture use test
was performed. Two lots of products A and B
each and one lot of product C were tested in
parallel. Results indicated that product C
resulted in significantly lower titer compared to
products A and B. The average titer with prod-
uct C was approximately 30% lower than that
obtained with products A and B. Because of
lower titer obtained with product C, it was con-
sidered unacceptable for use.

Although product C was deemed unaccept-
able for use in manufacturing, the experimental
data provided an opportunity to establish the
critical components required to attain desired
productivity. To identify these components, a
partial least squares (PLS) model was developed
using the data in the experiment described ear-
lier. The PLS model used 10 experimental obser-
vations (five lots described above, tested in
duplicate) and analytical data of 16 analytes.
The model resulted in three principal compo-
nents that could explain 96% of the variation in
X data (R2(X) = 0.96) and resulted in cumulative
R2(Y) and cumulative Q2(Y) values of 0.96 and
0.89, respectively. The critical quality attributes
were identified by reviewing the coefficient plot
(Figure 17) and the variable importance plot
(Figure 18). Note that the coefficients in the
coefficient plot indicate the scaled and centered
data with confidence intervals derived from
jackknifing. The variable importance for the
projection (VIP) values reflect the importance of
terms in the model with respect to Y, i.e., its
correlation to titer, and with respect to X (the

Figure 14. Mean square of successive differences based multivariate exponentially weighted moving average chart during
monitoring
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projection). Terms with VIP val-
ues greater than 1 are the most
relevant in explaining Y. For
the PLS model described above,
the terms with VIP values larger
than 1 were n-3 fatty acids, LO,
HDL, and FC. However, a
review of the coefficient plot
pointed to the large variation
associated with HDL and FC
data. As a result, only n-3 fatty
acids and lipid oxidation (LO)
were determined to be the criti-
cal quality attributes. The
effects of n-3 fatty acids and
lipid oxidation on process pro-
ductivity are plausible as litera-
ture references of such effects
on certain cell types are avail-
able.15–16

In summary, multivariate
analysis for raw material selec-
tion and control serves multi-
ple purposes. First, it
categorizes an incoming prod-
uct based on the analytical data
alone, without the need to
evaluate it using time-consum-
ing cell culture studies. This
classification is quite important
because scale-down studies may
not result in picking up the dif-
ferences in raw materials even
though they are different ana-
lytically. Performing the multi-
variate analysis on the
analytical data provides
another criterion for deciding if
a raw material from a particular
vendor or source is acceptable
for use in manufacturing.
Second, MVDA can be applied
to the combined experimental
and analytical data to identify the critical com-
ponents required for desired outcome, e.g., pro-
ductivity. After sufficient analytical and
experimental data are gathered, multivariate
analysis can be used as the sole criterion for
assessing the raw material quality. It can also
assist in directing the efforts to improve the
quality of a suboptimal raw material (e.g., prod-
uct C in the current study). Finally, the multi-
variate analysis also helps limit the scope of
analytical testing for raw material control. For
example, in the case study described here, only

two assays may be needed for future products
(or lots) instead of the four used to develop the
model ealier.

SUMMARY
This article demonstrates the usefulness of the
MVDA with respect to various activities
involved in biopharmaceutical manufacturing,
including scale up, process comparability,
process optimization, process monitoring, and
raw material testing. Currently, a lot of data
collected at small and large scale do not
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Figure 16. Loading plot (p[1] versus p[2])
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Figure 15. Principal component analysis (t[1] versus t[2])
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undergo the rigorous data analysis presented
here. We hope to convince the readers that
MVDA allows us to extract useful process infor-
mation through analysis of the readily available
data, in order to maximize our understanding
of the process. As the biotech industry imple-
ments Quality by Design, multivariate analysis
will become a necessity.  �
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Figure 18.  Variable importance plots (partial least squares model of titer)
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Figure 17.   Coefficient plot (partial least squares model of titer)
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