

optimize high-cell-density

seed trains

Configuration

Optimized Upstream Development – Actionable Insights Through In Silico Simulations

configurations that deliver

desirable performance at

high cell densities

	Time	Performance	Quality	Costs
Perfusion Cell Line Selection	Instantly generate fed-batch, perfusion, and N-1 cell culture clone performance forecasts	Maximize understanding of clone performance through rich in silico predictions	Reduce run variability by standardizing clone- selection workflows	Choose the best clone without having to perform resource-intensive, in vitro experiments
Condition Configuration	Quickly determine optimal bioreactor parameter settings	Determine how parameter adjustments impact cell growth, metabolism, and productivity	Maintain key attributes within specification	Find optimized bioreactor settings using <i>in silico</i> simulations
Perfusion Protocol Configuration	Rapidly configure and optimize perfusion media exchange settings	Investigate how perfusion media composition and exchange rates impact cell growth	Develop understanding of core growth kinetics and sensitivity to waste by-products during media exchanges	Minimize the necessary number of experiments to define optimal media compositions and perfusion media exchange settings
Seed Train	Quickly configure and	Understand how seed duration,	Identify seed train	Experiment with different

number of passages, and culture

methods impact cell growth

seed train configurations

physical experiments

without having to perform